10

05

[Max. Marks: 80]

Total No. of Printed Pages:03

SUBJECT CODE NO:- H-292 FACULTY OF SCIENCE AND TECHNOLOGY F. E. (All)

Engineering Mathematics - I (REVISED)

[Time: Three Hours]

Please check whether you have got the right question paper.

N.B

- 1) Use of non-programmable calculator is allowed
- 2) Q. no.1 and Q. no. 6 are compulsory
- 3) Solve any two question from Q. nos. 2,3,4 and 5
- 4) Solve any two question from Q. nos. 7,8,9 and 10

SECTION A

- Q.1 Attempt the following (Any five):
 - a. State condition for consistency of a system of homogeneous equation.
 - b. Define Eigen values and Eigen vectors.
 - c. Find rank of $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$
 - d. Define linear transformation.
 - e. Find modulus and amplitude of Z = 1 i
 - f. Simplify $\frac{(\cos\theta + i\sin\theta)^4}{(\cos\theta i\sin\theta)^3}$
 - g. State De-Moivre's theorem.
 - h. Find general value of log(-10).
- Q.2 a. Find rank of matrix A by reducing it to its normal form.

$$A = \begin{bmatrix} 3 & -4 & -1 & 2 \\ 1 & 7 & 3 & 1 \\ 5 & -2 & 5 & 4 \\ 9 & -3 & 7 & 7 \end{bmatrix}$$

b. Find Eigen values and Eigen vector corresponding largest Eigen value of following matrix. 05

$$A = \begin{bmatrix} 0 & -1 & -2 \\ 2 & 3 & 2 \\ 1 & 1 & 3 \end{bmatrix}$$

10

- c. The centre of regular hexagon is at origin and one vertex is $\sqrt{3} + i$ on Argrand's diagram, determine the other vertices
- Q.3 a. Test for consistency and solve if possible the following system of equations $2x + 3y 4z = -2, \quad x y + 3z = 4, 3x + 2y z = -5$
 - b. Verify cayley-Hamilton theorem and find inverse of $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$
 - c. Show that all roots of equation $(x + 1)^7 = (x 1)^7$ are given by $\mp icot \left[k\frac{\pi}{7}\right]$. Where k=1,2,3.
- Q.4 a. Examine for linear dependence or linear independence and find relation if dependence the following set of vectors.

[2,3,-1,-1], [1,-1,-2,4], [3,1,3,-2], [6,3,0,-7] b. Separate real and imaginary parts of $\sin^{-1}[e^{i\theta}]$.

- c. If $cosec(\frac{\pi}{4} + ix) = u + iv$, prove that $(u^2 + v^2)^2 = 2(u^2 v^2)$.
- Q.5 a. Given the transformation $Y = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 0 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ find co-ordinates $[x_1 \ x_2 \ x_3]$ to (2,3,0) in y.
 - b. Separate t^{i} into real and imaginary parts, consider only principle values 05
 - c. If $tan(\alpha + i\beta) = i$, α , β being real, prove that α is indeterminate and β is infinite 05

SECTION B

- Q.6 Attempt the following (Any five):
 - a. Find n^{th} order derivation of $y = \frac{1}{2x+5}$
 - b. State Maclaurin's theorem and derive series for tanx
 - c. State Cauchy's n^{th} root test
 - d. Find stationary values of function $x^3y^2(1-x-y)$
 - e. Find Jacobian $\frac{\partial(x,y)}{\partial(r,\theta)}$ if $u = r\cos\theta$, $v = r\sin\theta$
 - f. If $u = \sin \sqrt{\frac{x-y}{x+y}}$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$
 - g. Evaluate $\lim_{x\to 1} \{\frac{\log \sin x}{\cos x}\}$
 - h. Derive series for $\log(x+1)$
- Q.7 a. Find the n^{th} derivative of $\frac{x}{(x-1)(x-2)(x-3)}$ 05
 - b. Find $\frac{dy}{dx}$, if $(\cos x)^y = (\sin y)^x$.

Examination NOV/DEC 2018

H-292

c. If
$$u = \sec^{-1} \frac{(x^3 + y^3)}{x + y}$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2\cot u$

Q.8 a. Evaluate $\lim_{x\to 0} \left(\frac{\tan x}{x}\right) x^{\frac{1}{2}}$. 05

b. if
$$u = x + y + z$$
, $u^2v = y + z$, $u^2w = z$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.

05 c. $if u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that

1.
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$$

2.
$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$$
.

a. Prove that $cosx \ coshx = 1 - \frac{2^2x^4}{4!} + \frac{2^4x^8}{8!} \dots \dots \dots$ b. Expand $x^4 - 3x^3 + 2x^2 - x + 1$ in powers of x-3 Q.9 05

05

c. If
$$x + y = 2e^{\theta} \cos \theta$$
 and $x - y = 2ie^{\theta} \sin \theta$ show that $\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \theta^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$ 05

Q.10 a. Prove that $\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots$ 05

Test for convergence or divergence of $\sum \frac{n^2(n+1)^2}{n!}$. 05

05 Divide 24 into three parts such that the continued product of first, square of second and cube of third may be maximum.