Total No. of Printed Pages:04

SUBJECT CODE NO: H-122 FACULTY OF SCIENCE AND TECHNOLOGY F. E. (All)

Engineering Mechanics (REVISED)

[Time: Three Hours] [Max.Marks:80]

N.B

Please check whether you have got the right question paper.

- i) Question numbers one & six are compulsory.
- ii) Attempt any two questions from each section from remaining.
- iii) Figures to the right indicate full marks.
- iv) Assume suitable data if necessary.

SECTION - A

Q.1 Attempt <u>any FIVE</u> from the following.

10

- a) State the principle of transmissibility of forces.
- b) State Lami's theorem.
- c) Define the term free body diagram
- d) Define coefficient of friction.
- e) Define the term friction.
- f) What are the assumptions made in the analysis of simple truss.
- g) Enlist the different type of support.
- h) What do you mean by resolution of force?
- Q.2 a) The resultant of the two forces, whey they act at an angle of 60° is 14 N. if the same forces 07 are acting at right angles, their resultant is $\sqrt{136}$ N. Determine the magnitude of the two forces.
 - b) Determine the magnitude of F_1 and F_2 so that the particle is in equilibrium.

07

15

Q.3 a) Find the support reactions for the beam shown in fig. by virtual work method.

b) Find the minimum force P required to move the block A weighing 20 kN. If $\mu = 0.25$. 08 Find θ also.

Q.4 Determine the forces in each member of the truss & state if the members are in tension OR compression.

Q.5 Determine moment of inertia of the area about its centroidal axes. Also determine centroidal polar 15 moment of inertia.

SECTION - B

Q.6 Attempt any FIVE questions from the following. 10

- a) Define the term range of projectile.
- b) State law of conservation of momentum.
- c) Define the term Angular acceleration.
- d) State D' Alembert's principle.
- e) Define the coefficient of restitution.
- f) Find the power of an engine, which can do a work of 1200 joules in 8 seconds.
- g) Distinguish clearly between mass & weight.
- h) Define momentum.
- a) A body is moving with uniform acceleration and covers 20m in 4th sec. and 30 m in 8th 07 Q.7 second. Determine
 - i) The initial velocity of the body.
 - ii) Acceleration of the body.
 - b) A particle moves along a straight line so that it's displacement in Meter from a fixed point 08 is given by,

$$s = 2t^3 + 4t^2 - 6t + 8$$

Find:-

- i) Velocity at start
- ii) Velocity after 5 second
- iii) Acceleration at start
- iv) Acceleration after 5 seconds.
- Q.8 a) A particle is projected in air with a uniform velocity 60 m/s at an angle of 45° with the horizontal.

07

Find:-

- i) horizontal range
- ii) maximum height attained by particle
- iii) time of flight
- b) A wheel, rotating about a fixed axis at 20 r.p.m, is uniformly accelerated for 70 seconds, during which time it makes 50 revolution.

08

- i) Angular velocity at the end of this interval and
- ii) Time required for the speed to reach 100 revolution per minute.
- a) Two bodies of weight 30 N and 15 N are connected to the two ends of a light in extensible Q.9 07 string, passing over smooth pulley. The weight of 30 N is placed on a smooth horizontal surface while the weight of 15 N is hanging free in air.

Find:-

- i) The acceleration of the system
- ii) The tension in the string take $g = 9.81 \, m/s^2$

- b) A bullet of mass 50 gm is fired into a freely suspended target to mass 5 kg. on impact, the target moves with a velocity of 7 m/s along with the bullet in the direction of firing. Find the velocity of bullet.
- Q.10 a) A block of wood of weight 1000 N is placed on a smooth inclined plane which makes an angle of 30° with the horizontal. Find the work done in pulling the block up for a length of 5m.
 - b) Find the angular acceleration of flywheel of an engine, which weighs 1500 N and has a radius of gyration 0.6m, if the wheel is subjected to a torque of 2000 N. m Take $g = 9.8 \, m/s^2$.