Total No. of Printed Pages:02

SUBJECT CODE NO:- H-538 FACULTY OF SCIENCE AND TECHNOLOGY T.E.(EEP/EE/EEE) Electromagnetic Fields (REVISED)

[Time: Three Hours] [Max.Marks:80]

N.B

Please check whether you have got the right question paper.

- i. Que. No. 01 & Que no. 06 are compulsory.
- ii. Attempt any two questions from remaining questions of each section.
- iii. Assume suitable data wherever necessary.

Section A

Q.1 Attempt any five

10

- a) Find $|\overline{F}|$ at point P(-4,3,5) if vector field $\overline{F} = 0.4 (y 2x) \widehat{a_x} \frac{200}{x^2 + y^2 + z^2} \widehat{a_z}$.
- b) State coulombs law.
- c) Define electric flux density.
- d) Define electric potential.
- e) The two vectors given $\vec{A} = 2\hat{a}\hat{x} \hat{a}\hat{z} \& \vec{B} = 2\hat{a}\hat{x} \hat{a}\hat{y} 2\hat{a}\hat{z}$ then find (\vec{A}, \vec{B}) .
- f) Define current & current density.
- g) Define vector product.

Q.2

a) Transform vector $\vec{P} = 10\hat{a}\hat{x} - 8\hat{a}\hat{y} + 6\hat{a}\hat{z}$ to cylindrical coordinate system at point P(10, -8,6).

07

- b) Define electric field intensity & derive expression for electric field intensity due to volume 08 charge distribution.
- Q.3
- a) The flux density $\vec{D} = \frac{r}{3} \hat{ar} nc/m^2$ is in the free space

07

- a. Find \vec{E} at r = 0.2m
- b. Find the total electric flux leaving the sphere of r = 0.2m.
- b) State & explain divergence theorem.

08

Q.4 a) State & explain continuity equation of current.

07

08

- b) A current density $\vec{f} = \frac{100 \cos \theta}{r^2 + 1} \hat{ar} A | m^2$ is in the spherical coordinate system.
 - a. How much current flows through r=3m , $0<\theta<\pi/6$ & $0\leq\emptyset\leq2\pi$.

Examination NOV/DEC 2018

			H-53
Q.5	a)	Define Polarization & derive the expression for polarization.	07
	b)	Derive the boundary conditions between two perfect dielectrics.	08
		Section B	
Q.6	Attem	pt any five	10
		Define magnetic field intensity.	SAN S
		State Ampere circuital law.	3,30
		State Laplace's equation for scalar magnetic field.	18 P.
	d))
	e) f)	Define scalar magnetic potential. Define displacement current.	
	g)	Define magnetization.	
Q.7	a)	State & explain the stokes theorem.	07
	b)	Derive the expressions for boundary conditions of two different magnetic materials.	08
Q.8	a)	A point charge of $Q = -1.2C$ has velocity $\vec{\vartheta} = 5\hat{a}x + 2\hat{a}y - 3\hat{a}z m s$. Find the magnitude of force exerted on the charge if	08
		a. $\vec{E} = -18\hat{a}\hat{x} + 5\hat{a}\hat{y} - 10\hat{a}\hat{z}$ v/m	
		b. $\vec{B} = -4\hat{a}\hat{x} + 4\hat{a}\hat{y} + 3\hat{a}\hat{z}$ T	
	b)	State & explain Faraday's law.	07
Q.9	a)	If \vec{H} due to current source is given by $\vec{H} = [y\cos(\alpha x)] \hat{ax} + (y + e^x) \hat{az}$. Describe the current density over the yz plane.	07
	b)	State the Maxwell's equation in differential form in magnetic field.	08
Q.10	Write	short note on	15
00,00	a)	Self & mutual inductance	
101 E	(b)	Lorentz force	
32 4 VO	200C)	Permeability	