Total No. of Printed Pages:2

SUBJECT CODE NO:- H-1792 FACULTY OF SCIENCE AND TECHNOLOGY M.F. (Flortrical Power System)

M.E. (Electrical Power System)
Computer Aided Power System Analysis
(REVISED)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

N.B

- 1. Solve any two questions from each section.
- 2. Assume suitable data if necessary.

Section A

Q.1 a) Explain with neat Flow Chart, **Z**- bus building Algorithm.

10

b) Two synchronous machines are connected through three phase transformer & Transmission line, as shown in Figure 'A'. The ratings of machines & Transformers are:

$$M_1 \& M_2 : 200 \text{ MVA}, 20 \text{ KV}, xd'' = x_1 = x_2 = 10\%$$

$$x_0 = x_n = 5\%.$$

 $T_1 \& T_2$: 100 MVA, 20 Δ /440YKV, x = 10%

Select base of 200 MVA, 400KV in Transmission line circuit, the line reactance are $x_1 = x_2 = 15\% \& x_0 = 25\%$. Draw sequence networks.

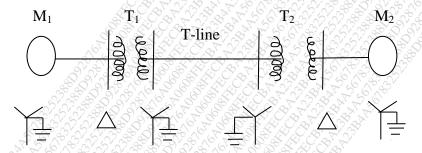


Figure -'A' Q.1(b)

- Q.2 (a) What are symmetrical components? How are they useful in power system studies? Prove that 10 neutral current can flow only if zero sequence currents are present.
 - (b) A10 MVA, 11KV generator is directly connected to a transmission line, a short circuit occurs between two phases involving phase b&c. The Positive, negative & zero sequence reactance are in ohms are given below.

Generator	\times_1	X ₂	× ₀
line	27	9	4.5
upto	930	9	0
Fault.	10 th		

Write the note on faults on this known system.

Examination NOV/DEC 2018

H-1792

			16 E 200 C
Q.3		Derive Expressions of sequence components for one conductor open fault. Draw the connection diagrams & sequence network for the same.	10
	b) I	Derive the expression for fault current for LL-fault on phase a & b.	10
		Section B	
Q.4	a) I	Derive expression for sequence impedances of transmission line.	10
b)	b) I	Explain the sequence impedances of three winding transformer.	10
Q.5	a) I	Explain in details the comparison of Admittance & impedance Matrix Techniques.	10
b)		Solve following equations by Newton-Raphson method. $x_1^2 - 4x_2 - 4 = 0 \& 2x_1 - x_2 - 2 = 0.$	10
Q.6	a) I	Discuss the generalized fault diagram for shunt faults.	10
h	b) V	Write short note on Kron's transformation matrix method and its applications.	10