SUBJECT CODE NO:- P-299 **FACULTY OF ENGINEERING AND TECHNOLOGY** T.E.(CSE/IT) Examination May/June 2017 **Theory of Computation**

(Revised)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

N.B

- i) Q.No.1 and Q.No.6 are compulsory.
- ii) Attempt any two questions from Q.No.2 to Q.No.5 and from Q. No.7 to Q. No. 10 of each section.
- iii) Figures to the right indicate full marks.

Section A

Q.1 Attempt any five from the following:- 10

- 1. Define Mealy and Moore machine model with an example.
- 2. What is acceptability of a string by FA?
- 3. Define deterministic Finite Automata with suitable example.
- 4. What is ambiguity in grammar, give an example?
- 5. Explain types of derivation tree in CFG.
- 6. Construct transition diagram of following regular expression a*b + b*a
- 7. What is CFG? Give an example.
- 8. Define type 2 -production.
- Q.2 a) Consider M= $(\{q_1, q_2, q_3\} \{ 0,1\} \delta, q_1, \{q_3\})$ a nondeterministic finite automation where δ is given by.

80

- $\delta(q_1, 0) = \{q_2, q_3\} \delta(q_1, 1) = \{q_1\}$
- $\delta(q_2,0) = \{q_1,q_2\}\delta(q_2,1) = \phi$
- $\delta(q_3, 0) = \{q_2\} \delta(q_3, 1) = \{q_1, q_2\}$

Construct an equivalent DFA

b) Construct a Moore machine which is equivalent to the mealy machine described by the following 07 transition diagram.

Q.3 a) Construct a DFA with reduced states equivalent to the regular expression. (0+1)* (00+11) (0+1)*

80

b) What is pumping lemma for regular languages? Show that the set L={a' | p is prime} is not regular.

07

Q.4 a) Construct the minimum state equivalent DFA for the DFA given by The following transition table.

States	Inputs	
	0	1
$\rightarrow q_1$	q ₂	q ₃
q ₂	q ₃	q ₅
q ₃	q ₄	q₃
q_4	q_3	q_5
q ₅	q ₂	q ₅

0.

08

b) The grammar is

G=({s}, {a, b, +, *} P, S) where P consists of S \rightarrow S + S|S * S|a|b show that the grammar is ambiguous.

- Q.5 Write short notes on following:-
 - 1. Applications of FA
 - 2. Ambiguity in grammars.
 - 3. Chomsky class faction of languages.

Section B

Q.6 Attempt any five from the following

10

15

- 1) What are possibilities of a TM when processing an input string?
- 2) Define CNF and GNF.
- 3) Define null production in CFG with an example.
- 4) Define instantaneous description of PDA
- 5) What is halting problem of TM?
- 6) What is universal Turing machine?
- 7) What is a linear bounded automata?
- 8) Explain the language of a PDA.
- Q.7 a) Consider the grammar G S \rightarrow AB, A \rightarrow a, B \rightarrow C|b, C \rightarrow D, D \rightarrow E nad E \rightarrow a. Eliminate UNIT 08 productions and get an equivalent grammar.
 - b) Explain the two normal forms for the grammar.

07

80

- Q.8 a) Explain in detail PDA and acceptance by PDA.
 - b) Construct a POA A equivalent to the following context free grammar $S \rightarrow OBB, B \rightarrow OS|IS|O$. Test 07 whether $O(O^4)$ is in N (A).
- Q.9 a) Explain the Turing machine model in brief. Explain its representation by ID and transition Table. 08
 - b) Design a Turing m/c to recognize all strings consisting of an even number of 1's.
- Q.10 Write a short note on following.

15

- 1. Programming techniques for TM.
- 2. Deterministic pushdown automata
- 3. Pumping lemma for CFL.