Total No. of Printed Pages:03

SUBJECT CODE NO:- H-520 FACULTY OF SCIENCE AND TECHNOLOGY T.E.(CIVIL) Theory Of Structures-II

Theory Of Structures-II (REVISED)

[Time: Three Hours] [Max,Marks:80]

Please check whether you have got the right question paper.

N.B

- 1) Question No. 1 & 6 are compulsory.
- 2) Attempt any two questions from remaining each section.
- 3) Assume suitable data if necessary & state it clearly.

Section A

Q.1 Answer the following (Any Two)

10

- a) Derive slope deflection equation.
- b) What are the assumption made is plastic theory?
- c) Explain static & kinematic in determinacy of rigid plane frame & pin joined frames with suitable examples.
- Q.2 Analyze the continuous beam show in fig. 1 using slope deflection method. E1 is constant and 15 draw BMD.

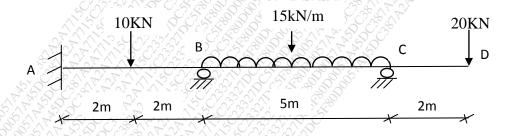


Fig. 1

Q.3 Analyze the portal frame shows in fig. 2 by using column analogy method and draw BMD.

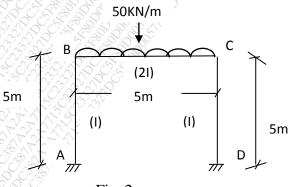


Fig. 2

15

15

06

Q.4 Analyze the pin joined redundant truss as shown in fig. 3 take EI=constant

50KN E D

2m

A

B

777

C

2m > C

2m > C

Fig. 3

- Q.5 Answer the following
 - a) Differentiate between rigid joined plane frames & pin joined plane frames.
 - b) What is difference between plastic hinge & mechanical hinge?
 - c) Write a note on shape factor and find shape factor for circle of diameter D.

Section B

- Q.6 A) Answer the following (Any Two)
 - a) Explain effect of shortening of rib on two hinged arch.
 - b) Define distribution factor & rotation factor.
 - c) State moment distribution method.
 - B) Write a short note on sway analysis of frames using moment distribution method.
- Q.7 Analyze the continuous beam shown in fig. 4& by using moment distribution method if support 15 B sinks by 5mm. Take $E=200\text{KN/mm}^2$, $I=3.5\times10^7 mm^4$ and draw BMD.

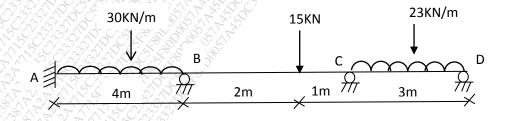


Fig. 4

15

Q.8 Analyze the portal frame shown in fig.5 by using Kani's method and draw BMD.

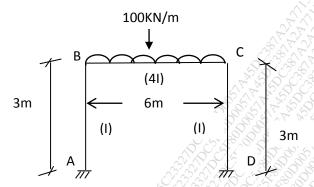


Fig. 5

Q.9 Analyze the portal frame shown in fig. 6 by using moment distribution method & draw BMD.

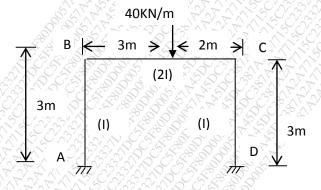


Fig. 6

Q.10 A two hinged parabolic area of span 20m and rise 4m carries uniformly distributed load of 50 KN/m on left half of span of arch. Find the reaction at the supports & position and amount of maximum bending moment.