Total No. of Printed Pages:02

N.B

SUBJECT CODE NO:- H-216 FACULTY OF SCIENCE AND TECHNOLOGY B.E. (Civil)

Elective-II: Advanced Structures (REVISED)

[Time: Three Hours] [Max.Marks:80]

Please check whether you have got the right question paper.

- 1) Solve any two questions from each section.
- 2) Use of IS 456, non-programmable calculator is allowed.
- 3) Assume suitable data if necessary & state it clearly.

Section A

Q.1 A building rests on six columns 500mm diameter & arranged as shown in fig.1. Each central 20 column carried a load of 800 KN & the end column carry 500KN each. Design main beam ABC & secondary beam BE of the raft foundation. Considering total wind load moment of 1200 KN-m. SBC of soil is 75 KN/m² use M₂₀ & Fe₄₁₅.

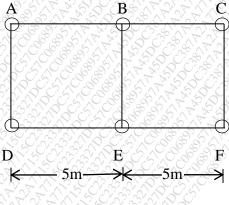


Fig.1

- Q.2 A 600mm square column is supported on four piles of 250mm diameter each. The Centre of each 20 pile is located at a distance of 0.5m from the central column. The column carries a service load of 1000KN & moment of 75KN-m. There is a moment of 250KN-m due to wind acting in any direction at a time. Design the pile cap use M_{20} , Fe415.
- Q.3 Design a beam for a circular hall of 5m radius supported on eight supports. The slab is carrying load of 5KN/m^2 & floor finish at 1.5 KN/m². Beam is also subjected to a brick masonry load having 2.5m height. K_1 =0.066, K_2 =0.033, K_3 =0.005, \emptyset = 9.5°. Show reinforcement details.

Examination NOV/DEC 2018

H-216

	Section B	
Q.4	 a) Explain following terms with reference to bridges 1) IRC loading 2) Ground contact area 3) Dispersion of load along span 4) Distribution of wheel load on slab 	12
	b) Derive the relation for edge shear in folded plates.	08
Q.5	 a) Explain various types of transmission towers & their utility in load resistance b) Explain following terms 1) Solidity ratio 2) Guyed towers 3) Lattice towers 	10 10
Q.6	 a) Explain design procedure of deep beam by IS code & British code. b) A beam 3500 mm deep & 250mm wide continuous over 3m spans & carries Udl. Service load of 160 KN/m & is supported on walls of 600mm thick on each end. Use M₂₀, Fe₄₁₅. Design deep beam. 	10 10